All posts tagged electroosmosis

Investigating the Effect of Texture on the Relative Benefit of Electroosmosis in Soil Remediation

The purpose of this experiment was to determine the influence of texture on the effect of electroosmosis (EO) on a hydraulic gradient imposed flow of an ionic solution through soil. It was hoped that by determining this, it would be possible to determine the effect of texture on the remedial potential of electroosmosis in a particular soil. A number of soil samples were gathered to provide a variety of attributes for a basis of comparison and analysis of trends. Soil samples were characterized for texture, pore space, particle density, and organic matter.

Using PVC pipe, a test chamber was designed to maintain an open-flow arrangement with a bottle used at the side of the anode to maintain a constant and relatively small external hydraulic gradient. The ionic solution used was a sodium chloride solution (3g/L).

For each test, an air-dried sample was loaded into the test chamber and the hydraulic gradient applied. Measurements of flow output were taken at ten-minute intervals for a total of four hours. Electroosmosis tests were run with a direct current of eight volts applied and control tests were run in the absence of electric current.

Of all variables, texture was found to be most directly related to the efficacy electroosmosis, with clay influencing EO negatively; the relationship identified substantiated the trend identified by the previous year’s study and contradicted the theoretical basis for electroosmotic efficacy.

Establishing a Correlation Between Texture and the Efficacy of Electroosmosis in Effecting the Removal of Organic Contaminants from Soil

The purpose of this experiment was to determine whether texture plays a significant role in determining the efficacy of electroosmosis in effecting the removal of organic, water-soluble contaminants from soil. Soil samples were collected which provided a wide assortment of attributes for a basis of comparison and analysis. The soil samples were oven-dried to assure the equal saturation of all the soil samples by equal concentrations of tannic acid.

A test chamber was constructed from a fluorescent tube protective cover and the end contacts of a fluorescent lamp. Three holes equidistant from one another were drilled in the tube in order to allow a measurement of tannic acid at regular intervals along the chamber. The test solution of tannic acid was 100 mg/L.

Each sample was saturated with tannic acid solution to the point that all pores were occupied. The test chamber was then filled with the saturated soil and the end caps sealed. An initial sample was taken from the test chamber in order to substantiate the initial concentration. A direct current of eight volts was then applied to the test chamber across the end contacts by means of a power supply. Every two hours for a total of six hours water samples were taken from each of the testing ports by means of pipettes. Each water sample was tested for tannic acid concentration.

The data collected show a tentative relationship of texture to electroosmotic efficacy and a distinct correlation between pore space and electroosmotic efficacy.

The Lubricating Effects of Electroosmosis on Drill Bits

The purpose of this project was to determine if applying negative potential to a drill bit used to drill concrete would significantly increase its drilling performance. Negative potential was required for a current to attempt to flow since the concrete samples were already positively charged by natural processes in the concrete.

A pulley was attached to the arm of the drill press to provide a constant and even application of force to the drill bit. The pulley was constructed by positioning a coffee can around the arm of the drill press and tying a weight to it with a long string wound around it. Uniform concrete test blocks were created by pouring concrete into Styrofoam cups.

For the trials with a negative potential applied to the drill bit, a wire was run from a power supply through a wire looped around the upper exposed end of drill bit. The drill press was insulated from the charge by wrapping emery paper around the part of the drill bit in the chuck. Each trial lasted exactly one minute. For the trials without a negative potential applied, the same procedure was used excluding the wire setup. In all of the trials, uniform concrete test blocks were drilled into.

After organizing the data it became apparent that the drill bit with negative potential applied did significantly better in drilling depth than the drill bit without the negative potential applied in almost every instance.